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SUMMARY 

A small deflection plate theory is developed which includes higher order 

approximations to the effects of transverse shear. The governing equa- 

tions and associated boundary conditions are developed by a variational 

method. The theory is sufficiently general to encompass anisotropic, 

laminated, composite, circularly curved, cylindrical plate elements of 

nonsymmetric cross section. Specific applications are made to the 

bending and the axial compression buckling of simply supported flat 

plates and to the axial compression buckling of curved plates and 

shells having classical, simple supports. It is shown that the effects 

of interlaminar shear can be significant in composite constructions 

which use very high strength fiber reinforcement. 

iii 



FOREWORD 

The work reported ?ierein constitutes a portion cf a continuing effort 

being undertaken at Stanford University for the Eustis Directorate, 

U.S. Army Air Mobility Research and Development Laboratory under 

Contract DAAJ02-70-C-0075 (Project lF06ll02A33F) to establish accurate 

theoretical prediction capability for the static and dynamic behavior 

of aircraft structural components using both conventional and uncon- 

ventional materials.     Predecessor contracts  supported investigations 

which Jed,  in part,  to the results presented in References 10,  11, Ik, 

and 15. 
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INTRODUCTION 

The desire for significantly increased efficiency in aerospace structures 

has encouraged the development of high-strength fiber composites for use 

in laminated plate and shell elements. However, to realize the potential 

inherent in composite construction, the theoretical prediction capability 

must be improved in order to match laboratory experience. Plate and shell 

theories which deal selectively with only some of the characteristics of 

laminated, composite constructions are becoming inadequate for the very 

high strength fiber composites being developed. In the case of laminated 
1-1+ 

plates and shells, researchers   have been concerned primarily with the 

anisotropic nature of layered constructions under the assumption that the 

interlaminar shear effects are negligible. Whereas this assumption is 

reasonably valid for composites with relatively high ratios of intorlaminar 

shear to laminae extensional moduli (for example, glass-epoxy), there is 

reason to question this assumption for seme of the newer composites (for 

example, boron-epoxy) wherein relatively low ratios of these moduli exist. 

The literature on the bending and buckling of laminated, composite plates 

and shells may be considered to begin with the work of Smith (Reference l). 

Therein, Smith considered the bending of a two-layered rectangular plate 

with orthotropic layers oriented so that the natural axes of each layer 

made equal but opposite angles with the coordinate axes. Plates and shells 

of this construction are referred to as being of the Smith type. By over- 

looking coupling between bending and membrane stresses. Smith concluded 

erroneously that a plate of this construction behaves in the same manner 
2 

as the conventional orthotropic plate. Reissner and Stavsky formulated 

the composite plate problem in terms of an Airy stress function and the 

lateral deflection. For the Smith-type plate, they established the ex- 

istence of interaction between bending and extensional stresses in plates 

under direct and lateral loads, respectively.  In laminated plates sym- 

metrical about a median surface, this coupling vanishes. In addition, 

Reissner and Stavsky noted from their solution that when the angle be- 

tween the coordinate and laminae natural axes is U5 degrees in a Smith- 

type plate, the membrane shear rigidity has no effect on the solution. 



~n Reference /i, the authors extended the Reissner-Stavsky formulation to 

shells; they applied their solution to a circular, cylindrical, composite 

shel! of Smith-type construction subjected to internal pressure. The 
2 coupling phenomenon found in the plate analysis was present a]so in that 

of the she!.!. The authors considered the validity of the Donnell approxi-
' j 

mations' when applied to composite shells and concluded that except for 

highly anisotropic composites (E^/E^ > 1000), any error introduced into 

composite-she!1 theory above that introduced into classical shell theory 

is negligible. Whitney and Leissa** reformulated the anisotropic plate 

problem in terms of the inplane and lateral displacements, and the stress 

resultants. They examined several bending, stability, and vibration 

problems not previously considered. 

The principal thrust of the foregoing studies was to show the effects of 

laminae anisotropy and variations in laminae orientations on the behavior 

of composite plates and shells. As all of the solutions relied on the 

Kirchhoff-Love hypothesis, the effects of interlaminar shear were neglected 

entirely. With regard to interlaminar shear effects, Pagano*3 pointed out 

their importance in discussing the differences between the flexural and 

extensional moduli of composite materials. He used an approximate 

method of Hoff (see Reference 6) in calculating the effect of shear on 

lateral deflections for the special case of bidirectional composite beams 

in cylindrical bending. 

A more rigorous analysis of interlaminar shear effects in the bending of 
-7 

composite plates was presented by Whitney. This solution was based on 

the anisotropic plate equations, including the effects of transverse shear, 
O 

developed by Ambartsumyan. Whitney modified the Ambartsumyan equations to 

accommodate composite plates, and he also included coupling between the two 

transverse shearing strains not present in the Ambartsumyan formulation. 

The solutions obtained by Whitney were applicable primarily to composite 

plates symmetrical about a median plane; for unsymmetrical constructions 

he considered only a plate strip. In addition, Whitney's results were 

confined to the consideration of the effects of large length-to-thickness 

ratios. 

2 



By extending the work of Khot^ to include a first approximation to the 

effectr, of inter]aminar shear, Taylor and Mayers10 obtained solutions for 

axia. compression buckling of composite, circular, cylindrical shells, 

in their analysis, Taylor and Mayers used a modified-Reissner variational 

principle11 in conjunction with the constitutive and strain-displacement 

relations given in Reference 3 and the curvature relations analogous to 

those used in Keference 12. Results were obtained for boron- and glass-

epoxy cylinders. 

iho theoretics, development and analysis presented herein take an essen-

tia., y different approach from all of the foregoing. These formulations 

were based on classical plate theory in that they used the equations 

of motion in terms of stress resultants and the Kirchhoff-Love hypothesis 

to establish the governing equations. By contrast, the present analysis, 

suggested by the sandwich-plate developments given in References 13 and lU, 

makes use of nonclassical kinematics and a variational principle to estab-

lish the governing equations and associated boundary conditions. The total 

potential energy developed in a composite plate during bending is formulated 

in terms of the displacements, and the variation with respect to the in-

dependent displacement functions yields the governing differential equations 

and boundary conditions in accordance with the potential energy principle. 

The model used is a generalization of that of Hoff in Reference 13 for 

sandwich plates. Hoff's model consisted of a core enclosed by two mem-

brane face sheets. The core was considered to extend to the median planes 

of the two face sheets and to carry only transverse shear. The behavior 

of two adjacent, laminae in a composite plate can be represented by a 

similar model under the following assumptions: 

The laminae behave as anisotropic membranes with all of the 

direct stress carrying material located at the median surfaces. 

. . .he matrix material between adjacent median surfaces carries 

al 1 of the "t ransverse shear. 

Hence, the composite p.iate is considered to be a multilayered sandwich 

plate with the matrix material acting as cores and the matrix-fiber 

combination acting as the membranes. It should be noted that the matrix 

3 



is considered to carry two types of stresses which do hot couple: the 

matrix acts in conjunction with the fibers to transmit the laminae stresses. 
1 < i ' 

and it acts alone to resist the stresses due to transverse: shear. 
' ' . i ' 

• I . 

For ease of analysis, compared with the methods, for example, of References 

2, 3, and k, a vector-matrix technique is introduced. The inplane displace-s 

ments of the laminated plate are described by two sets of functions, u^ 

and vk (k = 1,2,...,n) , where k designates any•one of the n l&yers. 

These sets of functions are considered to constitute two n-dimensional vec-

tors over the vector field of the plate reference surface, and the total 

potential energy is formulated in terms of these two vectors And the lat- • 

eral displacement function, w . Approximations to ariy degree of accuracy 

of the two vectors are then introduced by means of linear transformations. 
I 

These approximations give the two sets of displacement hinbtions in terms 

of smaller sets of generalized displacement functions. The Euler equations 

and all associated boundary conditions are then developed in terms of the 

approximated vectors and the lateral displacement. Actually, 'the Euler ' , 

equations corresponding to the two vector quantities are, in effect, sets . 
t 

of scalar equations involving the generalized displacement functions de-

scribing the plate behavior. The theory is not restricted to the preserva-

tion of plane sections and can be extended readily to include the definition 

of a separate lateral deflection function for efech lamina. This approach 

was adopted in Reference 15 in studying the bending and buckling of layered 

beams. Results of the analysis for several bending and buckling problems 
*, 1 

of plate and shell elements are presented in the form of charts. Details i 

of all theoretical developments appear in the appendixes. , 



I        < BASIC THEORY 

STATEMENT OF PROBLEM AND BASIC A^SUMPTXONS i 

The problem considered is the effect of interlamimr shear ;on the bending 

and buckling of composite,  flat plate's and circularly curved cylindrical 

shells.  '' ! i i ; ' 

The composite, structures ar,e conäidered "to consist of    n    laminae of 

equal thickness, with each lamina composed of a matrix' of finite shear 

transraissibility reinforced by continuous fibers in two perpendicular di- 
1 I 'l 

rections. The fiber, orientation rq&y  be different f^or different layers. 

The analytical modfel (see Figurfe l) consists.of n homogeneous, aniso- 

tropic laminae. Two tangent-plane displacement .functions, u,  and v, i 

(k = 1,2,. ..,n) are assigned'to each lamina.  In addition, [there is a 

lateral displacement function, w , äommon to all n laminae; 'The', 

radius of curvature, R , lis considered to be the same for all laminae 

and e:qual to the radius of the laminatp median surface. 

i   ■' ' 

Each lamina is assumed to be in a ötate of plane stress. In 'the trans- ■ 

verse planes, only shearing stresses are considered; all other stresses 

are assumed to be negligible. The transverse shearing stresses are    , 

assumed to be carried by the matrix material. No restriction is placed 
, i it 

on the preservation of plane sections.  'Finally, the lateral deflections 

of the composite structure are assumed to be small in comparison with its 

overall thickness. >      , t •   i    ' , 

STRAIN-DISPLACEMENT RELATIONS FOR A IAMIM 

For each lamina, when the, Donnell   approximations are used, the 'stralin- ; 

displacement relations can be expressed as 

' ' '      '5 



Figure 1. Analytical Model of Composite Flate 



where, as shown in Figure 3, the radial displacement is positive when 

directed inwardly. 

TRANSVERSE SHEAR STRAIH-DISPLACEMENT RELATIONS BETWEEN ADJACENT IAMINAE 

As derived in Appendix X, the transverse shear strains between adjacent 

.laminae are given in terms of the inplane and lateral displacement func-

tions of the k and k + 1 laminae as 

Sw \ - "k-KL 

bx t 
,<*> = !! 
' xz 

(fc) . t. Tfc' T*1 
7yz by t 

(2) 

CONSTITUTIVE RELATIONS FOR A LAMINA 

The relations between the inplane stresses and strains are those which 

govern the behavior of a homogeneous, anisotropic medium in a state of 

plane stress. In matrix notation, these relations are 

X 
P(k) 
L11 

c(k) 
L12 

c(k) 
13 

e(k) 
X 

y 
- CW 

12 
r(k) 
22 

rw 
23 

F(k) 
y 

T(k) 
xy 

S M r(k) 
2̂3 

C(k) i 
33 1 I y<*> xy 

(3) 

7 



where the matrix elements, C. .  , are related to the engineering material 

constants by 

:k) 

16 ij 

Cll 

c(k) 
U12 

k 2 2 h 
C-.., cos e + 2(C 0 + 2C.,o) sin 9 cos 9 + C,,,-, sin 9 
ii. i.e. ij CC- 

r\ Q ) ] 

(C-,, i Co0 - i+CLj sin "9 cos 9 + C, 0 (sin 9 + cos 9) -Li.    <-<- ij Xc. 

p(k)   _   ^p    _    n 
u13  "' v0ll  U12 

-22 

,(k) 
-23 

r(k) 
S3 

2C^) sin 9 cos 9 

+ (C12 - C22 + 20,    )   sin 0 cos 9 

h , .22 k 
= C  sin 9 + 2(C p + 2CL,J sin 9 cos 9 + C22 cos 9 

= (C11 - C12 - 2C    )  sinJ9 cos 9 

+ (Cl2 - C22 + 20 S)   sin 9 cos 9 

2 2 
=    (Cin   + C00 - 2C10 - 20^)   sin 9  cos 9 

11 i j/   .   U 1+  N + C^^,  \si.n 9 + cos 9) 

/   W 

and 

E 
11 

Jll 

12 

-22 

-      v12 

Ell V12 

1 - V 12 

J22 

1  - V 12 

c33   "   Gl2 

(5) 

POTENTIAL ENERGY FORMUIATION 

Strain Energy 

The strain energy stored in a laminated,   circularly curved plate consists 

of the strain energy associated with the plane state of stress of the 

laminae as developed in the classical manner from Equations (l) and (3), 

and the strain energy due to transverse shear as derived in Appendix I. 



Thus, the strain energy is expressed in terms of the displacements as 

/övk  w\  (k)/ö\  övk\l /övk  w\ 

II 

\ 

dx 

Jk) ^k + c(k) 
12  äx    2 

:(
k' ^ t '13 Ox 

öuk  övk'   +  I } dxdy 
öy   öx 

V - v k   k+1 dxdy 

(6) 

Potential of Applied Loads 

Two types of loadings are considered as shown in Figure 2: distributed, 

lateral surfac-  ;adings, and compressive edge loadings along the edges 

x = 0 and x = D . The potential of the applied loads for the two cases 

is given, respectively, by 

L b 

V = -J J  [pw] dxdy 

0 G 
and (T) 

• ■ -am dxdy 
In the first of Equations (7), W is the total displacement measured from 

the undeformed state, whereas in the second of Equations (7), w is the 

additional displacement which occurs during a buckling process. 

Total Potential Energy 

The total potential energy is given by Equations (6) and (7), with either 

N = 0 for bending problems or p = 0 for axial compression buckling x 



Distributed Lateral Loading 

Uniform Axial Compression Loading 

Figure 2.     Plate Loading Cases. 
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problems, as 

'*• -I;!! IK" ?*•»&•;)• «&•&)!? 

•IT 
- // tp.1«« -// f̂ (-) 1 («) 
0 0 0 o *• y ' J 

TOTAL POTENTIAL ENERGY IN VECTOR-MATRIX NOTATION 

The total potential energy as given by Equation (8) involves 2n + 1 

displacement functions, u^ and (k = 1,2,...,n) , and the lateral 

displacement function w . From Equation (8), it can be seen that the 

set of displacement functions is subjected to the same differ-

ential and integral operations. This consideration also applies to the 

set of displacement functions . Consequently, it is advantageous 

to consider these sets of functions as constituting two n-dimensional 

vectors, u and v , and to formulate the total potential energy as given 
by Equation (8) in vector-matrix notation. This allows the subsequent 

operations of variation and integration to be carried out with respect 

to the two displacement vectors u and v rather thin the 2n displace-

ment functions "k and With 

*1 
U2 

u = (9) 

u 
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(10) 

(11) 

(12) 

(13) 



and 

C. .    = 

0 

0 0 

0 

0 

Ö 

d^; 

i=l,2,3 
j=l,2,3 

the total potential energy can be written now as 

L b 

U + V    = 

3    oJ0/    U11      ^        12     W      H       / 

+   c 
13 W " R      / 

+    C, 
23 

ou 

+  a 

\äy      öx /J        öx 

öy + öx /J       \öy     R      / 

\öy      R      /+    33     Uy + Öx/J        \äy + öx /  ) 23 
dxdy 

B      •  u 

+    -^u      -A'u —   B      .v + -^v      -A^vJ dxdy 
t t    öy t 

Lb LbrN/ä\2l 

- // w ^ -II [f (£) 
oo oo       L^     ^ax' J 

dxdy (15) 
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REDUCTION OF INDEPENDENT DISPLACEMENT FUNCTIONS IN TOTAL POTENTIAL ENERGY 

As  shown in detal]  in Appendix II,  the set of displacement functions    u, 

(k = I,S,...,n)    may be considered as related by 

i^Ujy)    -    F1(x,y,zk) (l6) 
k = 1,2,...,n 

where z.     is the distance from any arbitrary reference plane to the 

center of the k   lamina. When the function F  is approximated by 

the first m + 1 terms of its power series expansion in z as 

F1(x,y,z) = u0(x,y) + zv^ix,?)  + ... + z um(x,y)       (l?) 

the displacement functions u,  given by Equation (l6) become 

\   "   U0+\U1 + '"  +ZkUm   v      ,  0 
(l8) 

k = 1,2,...,n 

Similarly,  the set of functions   v.     can be approximated by 

Vk   =    V0+ZkVl + ---  +ZkVm   >_1  p 
(19) 

Equations  (l8) and (19)  can effect a significant reduction in the number 

of independent displacement functions for multilayered plates with   n >> 1 ; 

these two sets of equations can be expressed in vector-matrix notation as, 

respectively, 

u    =    Q •  u * (20) 

and 

^   =    Q.  ^* (21) 

11+ 



where 

u. 

(22) 

u m -

r~ * — 
V 1 

0 
* 

m 

(23) 

ft = 

1 

1 

1 
2 

m 

m 

n z i n J 

(2k) 

With 

° i j ~ T ~ a • c.. 
i = 1 , 2 , 3 
t = 1 , 2 , 3 

(25; 
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A =    Q       •  A •   Q 

-^     ^T.   t 

(26) 

,(27), 

and 

:. .    =    Q,      •   C. .  •   I 
i = 1,2,3 
j = 1,2,3 

(28) 

the total potential energy as given by Equation (15)  can be written in 
-4 * _^ * 

terms of    u       and   v        as 

L   b 

U + V    =    - 
2 

0 0 

P3     Uy Sx      /J        \dy ox     /+"\12      ox     /       ay 

V13 'öx     /       \5y      + 5x    /        V23' hy    / * Uy     + ox    / 
+   2»C13 

2w 

R 

^ 

Ox 

5y öx    / 

K23 • I" + ^) 
^ 

+ K, 22 
öy 

?(c22.i) I   > dxdy + V/HM 
2    öw   _,^T       ^^    1 T 

t    äx 
u    + -^    u 

^.2    äw T   ^, 
A    •  u    - —   —    B        • v 

t    öy 

L b L b 

v        •  A    •   v      }dxdy - /  /     [pw] dxdy 

0 0 0  0 

/öw\2l 

(29) 
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where cognizance has been taken of the identities 

and 

A        S   A 

C. .     s    C. .! 
(30) 

Again, for purposes of,the present analysis, it must be:noted that in 

Equation (29), N =0 when bending problems arp being considered and 

p = 0   'when axial  compression buckling problems are being considered. 

■ ' ' ' , ,: 

GOVERNING EQUATIONS AND gOUUDABY CONDITIONS FOR IAMIMTED ■ FIAT  (R -»») 

AND CURVED PLATES 

1 

Extremization of the total potential energy functional given by Equation 

(29) with respect to    w , u       and    v    .   results in the following equi- 

librium equations and,associated boundaiy conditions.    The details of the 

application of the potential energy principle are given in Appendix III. 

Euler Equations 

T 
w tä 

t 1'    • Cpp'- 1 1-? - r  Kno 
' R       R      ■L 

-    K, 

+ GB1? 

äx Ä 

2 

23 
( 

'hu '       öv 

öy ^x 

t^'öv /öwöw\ 

• ( +   )+Nx    —j 
\äx       ^y   f/ '  :     öx 

p    =    0 (31) 
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•N2-> * o u * 

- t CU • £3" - * C'ii ( 
>2_> * >.2-4 * a u o v 

dy dxdy ) 

- t Ci2 

-,2-> * o v 

Sx5y 

— p- s» s2tf * - t =13 • 5JT- - 21 C13 • bxby 

t C23 

>2-* * o v 

5yc 

Sw 
. G — + - ^ r • u 

B Sx 

t dw t dw 
+ — — K^p + — Kgo - 0 

R dx 12 R Sy 23 
(32) 

a2_,. A ? * 

"* °22' &7~'1 °33 (S ̂ -* * V=-» V » T + ^ \ 

dx dxdy / 

t cT, • — * t C p t C23 • —7 i3 5x SxSy 3 Sy 

^ S2V * Sw # uB ̂  # 
- 2t C„, G„ — + — A • v 

dxdy dy t 

t dw t J» ^ 
+ K + K = 0 • (33) 
R dx R 5y 

Equations (31), (32) and (33) are the governing equations, expressed in 

terms of generalized displacements, corresponding to equilibrium in the 

directions of the displacement w and the generalized displacement vec-

tors u * and v * , respectively. For application to bending problems, 

U is set equal to zero in Equation (31), whereas for the eigenvalue 

problem of axial compression buckling, p is set equal to zero. 
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Boundary Conditions 

At x =• 0,L 

M Sw *T J c-w 
t (n-l) B • u I- IJ — 

dx I x ox 
5 

At y = 0,b 

. , x dW ^ GR It (n-l) B -v 
B 1 5y 

5w = 

At x = 0,L 

t 
I h 

bu* ^ bv>* 
+ C, 

ctx '12 by 

+ °l3Ux + by ) R Kl2J on 

At y = 0,b 

L* ^ M 

P33 W + Sx / °13 dx 
b? * « 1 
- Kg, I 
by R \ 

+ C23 

At y = 0,b 

bv * Bu * 

by 
+ C12 ' dx 

<vK 1 

rdt * bv>*\ M (by bx f 
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At x = 0,L 

Equations (3U) and (35) require that either the transverse shearing force 

or the lateral displacement vanishes at the plate edges. Equations (36) 

and (37) require that either the generalized, axial force vector or the 

generalized displacement vector in the direction of the axial force 

vector vanishes at the plate edges. Finally, Equations (38) and (39) 

require that either the generalized shearing force vector or the gen-

eralized displacement vector in the direction of shearing force vector 

vanishes at the plate edges. 

In viewing the boundary conditions, Equations (3̂ ) through (39), it can 

be seen that, unlike conventional plate or shell boundary conditions, there 

is no condition at any edge corresponding to either arbitrary moments or 

arbitrary rotations. The mathematical model is such that the bending 

moment at an edge is represented by the couple of direct stresses acting 

through the n laminae. Thus, the bending effect appears indirectly in 

the boundary conditions given by Equations (36) and (38). For example, 

in the case of simple support there should be no resultant bending 

moment formed by the laminae membrane stresses at the edges. 

The governing equations and boundary conditions given by Equations (3l) 

through (33) and (3M through (39), respectively, have been developed for 

laminated, composite, anisotropic plate structures characterized by a matrix 

of finite transverse shear rigidity reinforced by high-strength fibers. For 

application to the case of plates with interlaminar shear effects neglected, 

the governing equations and boundary conditions should be used under the con-

dition that Gg -» EI;L . The specialized kinematics of the problem preclude 

the case Gg -»» unless Equations (31) through (33) are coupled by 

linear operators into a single governing partial differential equation 

20 



(of fourth order for plates and eighth order for shells) and,   con- 

comitantly,  the boundary conditions,  Equations   (34) through  (39), 

are suitably reduced. 
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METHOD OF SOLUTION 

For problems wherein the plate or shell properties are orthotropic, with 

the natural and coordinate axes coinciding, the vector and matrices , 

C* and el, vanish in both the governing equations and boundary condi-
1.3 
tions. Consequently, for either a uniform, compressive edge loading or a 

sinusoidally distributed surface loading acting on a flat or curved plate 

with classical simple-support boundary conditions, the displacement func-

tions 

-» * -* i i t x . j i t y u = e. . cos s i n sirf-
i j L b 

v * = I*. . sin cos AjSC / (UO) L b 

w = gij Sin ¥ Sin 

satisfy automatically the governing equations and boundary conditions. 

Substitution of Equations (1+0) into Equations (3l) through (33) leads 

to a system of algebraic equations which may be solved for either bending 

(N = 0) or buckling (p = 0) problems, as appropriate. 

For laminae in which the natural and coordinate axes do not coincide 

(anisotropic media), the vector and matrices y ^13* a 2̂3 
not vanish; thus, the complexity of the equilibrium equations precludes 

a straightforward solution, even with the usually convenient assumption 

of simple-support boundary conditions. Solutions for this class of 

problems are obtained by applying the direct method of the calculus of 

variations to the total potential energy functional (Rayleigh-Ritz 

procedure). The minimizing sequences are taken as 
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u 

w 

L   J 
J nx     .     j it; 

cos ~- sin ^ L D 

=■ I "jsl j nx j ity xn ^^T— cos i1^- 
L b 

jnx     .     jit; g.  sin —r- sin - ' 2^ &j —• j, — b (^D 

where each term of the sequence for w satisfies the geometric boundary- 

conditions of classical, simple support. Details of the procedure for 

solving the problems of bending and buckling of anisotropic flat plates 

are given in Appendix IV. 

Equations {hO)  are used in conjunction with Equations (31) through (33) 

to effect solutions for the bending of simply supported, square, com- 

posite plates with orthctropic laminae subjected to the loading 

p = p_ sin y— sin j*- . Solutions are obtained corresponding to several 

values of the parameter rc in Equation (21+), and the results are dis- 

played in Figure 3«  Equatijr.r. U-l)  are used in conjunction with 

Equation (29) to obtain solutions for square, flat plates with aniso- 

tropic laminae subjected to either a uriformly distributed surface 

loading or a uniform, compressive loading in the axial direction (see 

Figure 2); the results are given in Figures k  through 9« Equations (UO) 

and (31) through (33) are used again to obtain solutions for the buckling 

of infinitely long, flat and circularly curved plates subjected to a 

uniform compressive loading in the axial direction (see Figure 2), and 

the results are presented in Figures 10, 11, and 12. 
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3.0.1- Plate  Properties 

L/b ^ 1 

L/h = 10 

n = 20 
E
22/Ell 

= 1 

G12/E11 = 0.381+6 

VE11 - 0.3 

^ = 0 

1.00 

GJE B'   11 

Figure 3.    Flat  Plate Maximum Deflections Corresponding to Various 
Approximations to Thickness Distributions of    u,   and v. 
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Figure k.     Effects of Barameter    G12/E1I    on Maximum Deflections of 
Uniformly Loaded Flat  Plates. 
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-hf,  0° 

Figure 5.    Effects of Parameter    E22/E11    on Maximum Deflections of 
Uniformly Loaded Flat  Plates. 
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Figure 6.    Effects of Parameter    V12/E11    on Maximum Deflections of 
Uniformly Loaded Flat Plates. 
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l.o Plate Properties:; 

L/b =     1 

n i=     20 

E22/EU =    0.7.5 ' 

S12/
Ell 

=    0.2 

V12/Ell =    0.125 

* =   1.50 

l.'O 

Figure 7.    Effects of Interlaminar Shear qn Maximum Deflections of 
Uniformly Loaded Flat Plates. 
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Figure 6.     Effects of Interlaminar Shear on Axial Compression Buckling 
of'Flat;Plates. 
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Figure 11.    Effects of Interlaminar Shear on Axial Compression Buckling 
of Long,  Circularly Curved,   Cylindrical Plates. 
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RESULTS AND DISCUSSION 

The theory developed in this study is intended for application to 

laminated plates and shells. However, the equations presented can be 

modified easily and applied to a much wider class of problems. In 

the development, plates and shells are considered to be composed of a 

number of thin laminae; however, there is no requirement that there be 

a one-to-one relationship between the laminae in the actual structure 

and those of the analytical model. Thus, the complex behavior of, for 

example, conventionally thick plates and multilayered sandwich construc-
tions can be approximated by representing the structures as laminates. 

Individual lamina can be assigned properties appropriate to the physical 

description of the actual structure. The kinematics of the laminae 

provide automatically for transverse shear deformations. Then, by 

introducing independence of the lateral displacements of each lamina, 

the effects of both transverse shear and normal strain can be taken 

into account. Ordinarily, such modeling would imply extensive, if not 

prohibitive, computations. However, by the introduction of the vector-

matrix techniques used in this study, the apparent tediousness of analysis 

can be greatly reduced. 

APPLICATION TO LAMINATED. COMPOSITE FIAT AND CURVED PIATES 

Validity of "Plane Sections" Assumption 

The degree of approximation of the displacement vectors is determined 

by the number of columns in the matrix Q appearing in Equations (20) 

and (21) and given by Equation (2k). In the latter equation, the number 
of columns in Q is indicated as m + 1 , where m is left arbitrary. 

The effect of the matrix Q on the analysis is to impose a constraint 

on the distortion of a transverse cross section. If m were set equal 

to unity, cross sections would be constrained to remain plane (but not 

normal) after deformation. Higher values of m allow cross sections to 

distort into shapes described by higher degree polynomials. 
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The choice of a suitable value of    m    for use in the analyses undertaken 

herein is based on the results presented in Figure 3.    There,   the curves 

show the effects of the shear stiffness parameter,     Gn/K,       ,   on the de- 

f] ections of a laterally loaded,   simply supported,   square plate as raven 

by solutions corresponding to various values of    m    .    The ordinates in 

Figure 3 are the maximum,   normalized deflections,   with normalization 

carried out with respect to the deflections  of a  similar plate having 

infinite transverse shear rigidity.     The plate properties are Indicated 

in the figure;  these properties tend to maximize the effects of trans- 

verse shear in plate-type  structures.     The plate loading is of the type 
nx    .     jty 

p = p0 sm r sin —. 

Solutions corresponding to three values of m in Equation (2li) are 

shown in Figure 3.  In addition, the solution corresponding to the case 

in which no approximation is introduced is shown and labeled m = n. 

The curves of Figure 3 illustrate that only a small increase in accuracy 

is obtained by changing from m = l to m = 3 , and that no appreciable 

increase in accuracy is obtained in taking m > 3 • In all, the as- 

sumption of transverse cross sections remaining plane, implied in using 

m = 1 , results in a good approximation of the effects of interlaminar 

shear for the parameters given in Figure 3. Thus, at least on the basis 

of the results obtained here, the assumption of plane sections remaining 

plane but not normal used in Reference 9 appears to be valid. The same 

assumption (corresponding to m = l) is the basis of all subsequent cal- 

culations presented in this study. The governing equations and boundary 

conditions for flat plates, Equations (31) through (39), are expanded 

into scalar form for the case m = 1 and are shown to reduce to the 

Reissner plate theory for homogeneous plates with the effects of trans- 
17 verse shear included. 

Coupling Between Bending and Membrane Stresses 

The coupling between bending and membrane stresses noted in References 2 

through 4 is present in this analysis in the form of coupling between coef- 

ficients of the even and odd powers of z (see Equation 2k).     The terms 

involving even powers of z correspond to extensional displacements, 
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wl.jiear.  t,entu;  Itr/oiviti^ odd powers of    ?.    correnpotid to bending displace- 

rr.ents. In the case of structures which are Symmetrie about a median 

surface and have the reference surface    (s = 0)    coinciding with this 

median surface,  the even-powered terras in Equation  {2h)  can have no net 

effect  on the results.     For laminates symmetric about a median surface, 

but having the reference surface    (z = 0)    at any other location, the 

even- and odd-powered terms  couple in any solution.    This is the case 

with the problem results presented in Figure 3 where the reference sur- 

face has been taken at the median surface of the extreme lamina.    For 

nonsymmetric laminates  (all other cases considered in this  section), 

coupling is always present unless a neutral surface can be identified 

readily and the reference surface located thereon.     In the present 

vector-matrix approach,  no special consideration need be given the 

question of coupling between membrane and bending stresses as the 

operations involved,  unlike the more conventional techniques  (see, 

for  example,  References 2,  3,  and h),  introduce no additional com- 

plexity in that they adjust automatically for any choice of reference 

surface location. 

Effects of Parameters    G,O/H-M^JL-^PO^-I 3   » and    vi2^Ell    on Ben(ij-n6 
of Plates Under Lateral Loading 

The effects of variations in the parameters    G,p/E,,   ,  Epp/E....   , and 

v, 0/E,,     on the maximum deflections of a uniformly loaded,  square com- 

posite plate have been studied,  and the results are presented in Figures 

k through 6.    In each figure,   curves corresponding to three different 

fiber orientations are shown.     Curve (l) in each case corresponds to a 

construction in which the fibers are aligned parallel to the plate edges 

and change orientation by 90    increments between adjacent laminae. 

Curve  (2)   corresponds to a construction in which the fibers are alter- 

nately aligned parallel to the plate edges and the plate diagonals; 

thus,  the fibers change orientation by 14-5   between adjacent laminae. 

Curve (3)   corresponds to a construction in which the fibers are always 

aligned along the plate diagonals and change orientation by 90    between 

adjacent laminae.    The other properties are as indicated in the figures. 
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Figure k  displays the effect of variations in G.p/E^ on maximum plate 

deflections and shows that when the fibers are oriented along the plate 

diagonals in a square plate, the magnitude of G, p has no effect on the 

deflections. This is ihe same phenomenon noted by Reissner and Stavsky 

in considering a Smith-type plate wherein the angle between the natural 

and coordinate axes was k1? .    The explanation is that for a uniformly 

loaded, square plate, the directions of the principal stresses are par- 

allel to the diagonals; hence, when the fibers are parallel to the 

diagonals, the laminae transmit no shearing stress and the shear modulus 

has no effect. For the other two types of const ruction, Figure h  shows 

the ratio of laminae shear to extensional moduli to have a considerable 

effect on the plate behavior. It is evident that constructions of 

type (l) are particularly poor choices for composites having low ratios 

of G^p/E,,  .  For composites constructed in the manner of type (l), 

this effect can diminish the potential advantage in using very high 

strength fibers.  It is interesting to note that at approximately 

G,p/E... = O.k    the relative rigidities of the constructions reverse. 

For ratios higher than O.k  the ability of the laminae to resist inplane 

shear exceeds its ability to resist extension and, hence, the most 

favorable construction is that wherein relatively high shearing stresses 

can be induced. 

The essentially parallel nature of the curves in Figures 5 and 6 indicates 

that while the ratios E2p/E,, and v-.o/E-i-i  do, of course, have an ef- 

fect on the bending rigidity, this effect is only slightly Influenced by 

the type of construction. The differences in deflections obtained for 

the three types of construction in Figures 5 and 6 can be attributed, 

in accordance with Figure h,  to the effect of G, 0/E .. - O.Z . 

Effects of Interlaminar Shear on the Bending and Buckling of Flat Plates 

The effects of interlaminar shear on the bending and buckling of com- 

posite flat plates are illustrated by considering the behavior of square, 

simply supported plates of varying aspect ratio subjected to either a 

uniformly distributed surface loading or a uniform axial compression 

loading. Results, normalized with respect to the behavior of sir.ilar 
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plates having the rehear stiffness parameter GR/E,, -»1 , are given in 

Figures 7 and 8 for the bending and buckling problems, respectively. 

Other physical constants for the plates analyzed are as indicated in 

the figures. 

Representative values for Gg/E-.-,  are 0.1 (glass epoxy) and 0.025 

(boron-epoxy). This range should be representative also of some of 

the newer plastic composites under consideration which utilize graphite, 

silicon carbide, and beryllium fibers as the reinforcing elements. For 

relatively thin plates, b/h > 30 , the bending and buckling are sig- 

nificantly influenced by interlaminar shear effects when the shear 

stiffness parameter is in the range G_/E,. < 0.0k    .    On the other 

hand, for relatively thicker plates, pay, b/h < 15 , the effects of 

interlaminar shear are significant wnen G^/E.,, < 0.1 . Of importance 
B X-L 

is the fact that for composite plates in the initial portion of the thin 

plate range and   ^\l < 0*025 >  small reductions in the shear stiffness 

parameter produce large increases in plate shear flexibility.    Thus,  in 

the bending and buckling analyses of practical thin plates and plate ele- 

ments in,  say,  stiffeners made of very high-strength-fiber composites,  such 

as boron-epoxy, interlaminar shear effects should not be overlooked. 

Design data for composite plates with properties other than those used 

to obtain the results presented in Figures 7 and 6 can be derived from 

charts similar to Figures U,  5, 6,  and 9-    Charts such as Figure 9 could 

be used to first determine,  for example, the buckling stress corresponding 

to prescribed values of   b/h   and    G-/E,,    and a reference set of laminae 

parameters    (G-JO/E-,-,  , E
^P/

E
VL >  vi2^Eil^    *    Then^  adjustment for the 

actual laminae parameters could be made by use of charts similar to 

Figures h through 6. 

Effects of Inter laminar Shear on the Buckling of Curved Plates and 

Shells Under Axial Compression 

The effects of interlaminar shear on the axial compression buckling of 

long,  thin,   circularly cylindrical composite plates and shells having 

classical simple-support boundary conditions are illustrated by 

38 



considering the behavior of plates having specific R/h and G_/E,, 

values and varying cross-section aspect ratios. The results are pre- 

sented in Figures 10 and 11. Figure 10 indicates that the presence of 

shallow curvature does not significantly modify the effects of inter- 

laminar shear obtained for the buckling of flat plates (R _»oo)  , For 

such curvature, the long plate develops only rectangular buckles along 

its length (one buckle half-wavelength in the circumferential direction), 

the buckle configuration obtained in the case of flat plates. 

In Figure 11, the same parameters as those used to develop Figure 10 are 

reused; however, a longer ordinate range is shown. The results now 

indicate that as the curved plate cross-section aspect ratio, b/h , 

approaches the value at which the plate behaves as a shell (shell be- 

havior being characterized by a buckled configuration of two or more 

half-waves in the circumferential direction), the effects of inter- 

laminar shear become negligible. This result means simply that the 

range of thin shell behavior, wherein transverse shear effects are 

quite small, has been reached. When thicker shells are considered, as 

in Figure 12, interlaminar shear, as would be expected, is seen to have 

a considerable effect. In this figure the critical axial compressive 

stress has been normalized with respect to that of similar shells having 

a shear stiffness parameter value G^/E. -, -» 1 • The conclusion regarding 

the small effect of interlaminar shear in thin composite shells corroborates 

the results given in Reference 10. Therein, Taylor and Mayers, on the basis 

of a first-approximation theory, studied the effects of interlaminar shear 

on the axial compression buckling of thin boron-epoxy and glass-epoxy 
t 

cylindrical shells; they concluded that interlaminar shear effects could 

be neglected for thin composite shells using current high-performance 

fibers. 

39 



CONCLUDING REMARKS 

A small deflection theory has been developed to assess tjie effects of 

interlaminar shear on the bending and buckling of flat and circularly 

curved plates of composite construction. The theoretical developments, 

in the form of governing equations and associated boundary-conditions, 

are sufficiently general to encompass anisotropic, circularly curved, 

cylindrical plate elements of nonsymmetric cross sectibn. ' Specific 

applications have been made to the bending and the axial compression 

buckling of simply supported flat plates and to the axial compression 

buckling of curved plates and shells having classical, simple supports. 
! I 

In the cases investigated, the interlaminar shear effects in composite 

plates having moderate cross section aspect ratios, say, 15 < ^ < 30 , 

become significant when the shear stiffness parameter, GR/E1^ , is 
less than about 0.0U . For relatively thicker plates, however, the 

interlaminar shear effects become significant when the shear stiffness 

parameter is less than about 0.1 . In the case of thin, highly curved 

plates and shells, the results indicate that the interlaminar shear 

effects are negligible when the shear stiffness parameter exceeds about 

0.01. For practical composite plates and shells of, for example, • 

boron- or glass-epoxy construction, effects of interlaminar shear are 

shown to be adequately described by a first approximation theory 

as that used in Reference 10; such a theory is given by this analysis 

when the exponent, m , in the power series approximation for distribu-

tions through the plate thickness of the inplane displacements is equal 

to unity. It is shown also that when m = 1 , the governing equations 

for flat plates reduce to the theory attributed to Reissner for homo-

geneous plates with the effects of transverse shear included. 

Though well suited for composite constructions, the present theory is.not 

limited to such applications. The theory could be used, for example, to 

treat the complex behavior of conventional thick plates and multilayered 

sandwich constructions (for example, normal strain and transverse shear 

effects in heated plates with irregular thermal gradients through the 
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thickness).    When solutions are obtained with the aid of high speed 

computers^  the vector-matrix development  used in the present analysis 

affords more than a notational advantage^ as the necessary operation's 

(obviously tedious for a fully coupled,   anisotropic plate problem)  can 

be: performed by the computer and,   hence,   they need not :be expanded. 

Further,  the approximations to the displacement vectors introduced 

effect a considerable reduction in the computer time required to obtain 

solutions.    For example,  the time required to solve the governing equa- 

tions  on an IBM 360, computer for a ^20-layered platfe and1   m    equal to 

unity is less than    3 : seconds,  whereas  the tima required to solve 

the equivalent  set of equations with no approximation introduced    , 

(m = 20)  is more than 30 seconds. 
: . ■   ' i 

Although the present theory is limited to problems which are kinematically 

and constitutively linear,  the variational development can be extended to 

include ponlinear strain-displacement relations.    Since many fiber com- 

posites possess  essentially linear stresö-strain relationships^ the  ques- 

tion of nonlinear constitutive laws does not appear at the present time 

to pose a pressing problem.    However, the effect of interlaminar shear on 

the behavior Of composite plates and shells in the large deflection region   , 

could be  quite significant and should be assessed. ' The theoretical analysis 

and method of solution1 presented herein offers an attractive approach to 

this problem. 
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APPENDIX I 

STRAIN ENERGY DUE TO TRANSVERSE SHEAR 

For a matrix material with infinite shear rigidity, an element taken 

from two adjacent laminae (see Figure 13a)  distorts due to bending as 

shown in Figure 13b;  the relationship between the inplane and lateral 

displacement functions is simply 

äw \-Vi 
hx 

(U2) 

With finite shear rigidity of the matrix material, the cross section 

experiences the additional rotation   y^ J    as indicated in Figure 13c. 

Similar considerations apply to the distortions-in.the   y-z    plane. 

Thus, the relationships between both the inplane and lateral displace- 

ment functions and the transverse shearing strains become 

'xz t                        ÖX 

'yz 

vk - vk+l  
öw 

t               öy 

(^3) 

The strain energy due to transverse shear is 

k=l      0 0  ^L   J 

(k) 
r 
yz 

dxdy m 

Introduction of Eq^oations {h3)  into Equation (kk) gives the final form 
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r 
- r umW/Am. -1 K+l 
(a) Geometry of Two Adjacent Laminae 

rVw/ox 

(b) Distortion of Element with Gg 

dw/dx 7 

(c) Distortion of Element with 0 < Gg < 

Figure 13. Geometry of Transverse Shear Deformation. 
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of the strain energy of transverse shear as 

n-1      „ .L      L b 

U. 
s 4    2 o/o/   L^x '    t      ' 

\cV " t / 

2 
I 

dxdy (^5) 
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APPENDIX II 

\ REDUCTION OF THE NUMBER OF INDEPEMDENT INPLANE DISPLACEMENT FUNCTIONS 

The displacement functions u. and v.  , k = 1,2, ...,n , are all 

functions of the x and y coordinates only; that is, 

k    K     k=l,2,.,.,n 

V = vk(x'^ ^7 

k = 1,2,. .. ,n 

Due to the continuity of the deformed structure,  there exist functions 

F^^ = F1(x,y,z)    and    F2 = Fp(x,y,z)    such that 

F^y,^)    =   ^(x^) {hf 
k = 1,2,...,n 

k       ...'....,n 

where z,  is the distance from a reference plane to the center of the 

k   lamina (see Figure l). The functions F  and F2 can be ex- 

panded into a power series in z . These expansions are written as 

F1(x,y,z) = u0(x,y) + z u^Xjy) + 

+ zV(x,y) + ... (50. 

-* -ft- 

F2(x,y,z)  - vü(x,y) + z v1(x,y) + 

+ z v (x,yi + ... (51 
m ' v 

The right-hand sides of Equations (50) and (51) have at most n terms 

since, corresponding to any location on the reference surface, F, and 

Fp must pass through n points and, therefore, can be given by a n-1 

degree polynomial in z . 
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Approximations of the Inunctions F  and ?0   are effected by terminating 

the expansions given by Equations (50) and (51) with the m0  term. 

Approximation of F,  in this manner and introduction of the approximation 

'nti1 Kquatic^ns {hB)  give 

u. * .   * .      m * U„ + Z,U-, + ... + z^u 11 Jl m 

*     *        m * 
u0 + z^ + ... 4 Z2um 

*     *        m * 
U   =  U- T Z Un + ... + Z U 
n    0   n 1       n m 

Equations (52) can be represented in vector-matrix form as 

(52) 

where 

u = Q • a? (53) 

u0 

u "< 

u 
m 

{%) 
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Q 

i 2' '  n 

1    Zg    z2,, 

1    z      z m     m 

-♦ A similar development for   v   results in 

where 

v = Q • v 

** ■=   • 

m 

n 

(55) 

(56) 

(57) 

Thus, Equations (53) and (56) represent the transformation of the 2n 

displacement functions i^ 'and v,  , k=l,2, ...';n , into the 

2(m + 1) generalized displacement functions u. and v  , 

k = 1,2,...,m . The transformation is quite useful in analyzing 

the behavior of thin, laminated, anisotroplc fl^t and curved plates 

since, normally, m « n ., 
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APPENDIX III 

VARIATION OF TOTAL POTENTIAL ENERGY 

To establish the governing equations of equilibrium and the associated 

boundary conditions, a stationary value of the total potential energy, 

Equation (^9), is sought with respect to admissible variations in the 

.lateral displacement function w and the generalized inplane displace- 

ment vectors u and v Although the variational process should, 

in general, be carried out simultaneously with respect to w , u   and 

v  , the formulation of the present problem is such that no loss of 

generality in the derivation is incurred by carrying out the variations 

separately. 

Variation of the total potential energy functional. Equation (29), with 

respect to the displacement function w gives 

6 (U + V) 
wv 

L b 

0 0 

+ K, 22 

L b 

t 

R 
K 12 Ox 

+ K, 
T 

23 

^ 
+ K, 

Ox 
23 

+ -^ I  • C0? • I 
R 

•Sw dxdy 

¥// 2(n-l) 

0 0 

öw äSw  öw ä5w 

öx hx        öy öy 

^ 

äy 

2 Ö5w -.*T  _»*  2 ö&w ^^T 
-   B   . u  - -   B   • v 
t öx t öy 

L b L b 

dxdy 

Jj      Cp5w] dxdy - j J 
0 0 0 0 

c)w öSw 

öx öx 
dxdy = 0 (58) 

Integration by parts leads to the following scalar differential equation 
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and associated boundary conditions. 

t 

R 

'^T   öu   _T   /öv '  öu  \ 
+ K 22 

r^  1 

cV 

V  I 
.2   .2 
o w  d w 

C22. I'w- GBt (n-l)|-^ + -^ 

+ GBB 
Vox  ' öy  / 

x2 
a w 

, + Nx ~2 " P = 0 

, öx   öy /    öx 
(59) 

At x = 0,L 

B 
t (n-1)   B 

öx 

T 
N — } 5w = 0 

dx 

At y = 0,b 

T 
t (n-1) B  -v 6w = 0 

(60) 

(61) 

Variation of the total potential energy functional, Equation (29), with 
-» * respect to the generalized displacement vector u   gives 

6    JU + V) 
—♦ ^ 
u 

rr (/-   w*\  ä6"* /-   w*\ -//il0---)-—ic--—) 
o5u 

fc(-—)1 [33     \öy öx     /J iöy öx 

T 

Ö5i? *      / ^        Ö7 * 

  + [^ öy \ öx 

öy     / öx 

T 

(^ ■ ^ 

Ö67 

öx 

/ öv?    V       05^? / ötf      \ Ö5u 

öy     / öx 

T 
Ö5u 

öx    / öy 

Ö5u ^ 

öy R 

T 

w    _» T        Ö5u 
 K2^    •     

öx R 

VT 

öy 
dxdy 

■5u    dxdy    =    0 

(62) 
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where the identities expressed by Equation (30) have been utilized. 

Integration by parts of Equation (62) leads to the following vector 

differential equation of equilibrium and associated vector boundary 

conditions. 

-     ^'    to"     '- t c, • -^--1 c12 •  '11 hx- öxöy 

^*     ö2^*' 
t c 

\ö7" ' ^öy / 

&* 

33     \ x^ öxöy 
t C 13 öx£ 

*** &*      t öw 
•wtt 

2tC13 
öxöy 

- t C 
«•^+;Ki2 * 

t   _>       öw ^ # öw     GB ^ » 
+ -   K„    - - GB B     -- + ^ A    •  u      =0 

R     23    öy       B öx     t 

(63) 

At    x = 0,L 

:tCii._ + tc12.- 
öy 

(6U) 

At   y = o,b 

ItC33 ( öy 
^1 ox     ^ 

+ tcl3 hx 

+ t 31 
1 

' K23   , 
;! 

.55 =    0 (65) 

Variation of the total potential energy functional, Equation (29), with 
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pect to the generalized displacement vector   v^       gives 
— r res 

6    ^(U + V) m~)t-^) ÖBv^ 

.C33-U 
Xt*     #?* 

T 

T 

06^ 

Ox •(v?-)- 
öy 

+ (C^-)—+ lC23—j 

+(^ir)- 
Ö&Ä? *        W _» m Ö5V 

bx R    23 ^x 

-   K, 22 
rLrb    (   ^  -^ 

dxdy + / / GR {- —   B 

I ('•'•)'!■ '8v      dxdy    =   0 
i 

where the identities expressed by Equation (30) have been utilized. 

(66) 

Integration by parts leads to the following vector differential equation 

and associated vector boundary conditions. 

x2-,* 

t Cr '22 ' rs öy 

^2.» ♦ 

t c,? •  
12  öxöy 

- t c33 • I —x— + 
*  h2** du \ 

hxhy I 

2tC„3- 
öxöy 

t C 
ö2^*  t _,  ^w 

^       + - *L - 
hx* R 13 ^ ' " "23 öx 

t _  öw      # öw  G 
+ - K22 r-GB#  - + - A    ^ R     dy 

* "" + .B ~* 

dy  t 
= 0 (6?) 
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At    x - Ü,L 

*       ^_» «. 

VV        öx    / 
+ t C2i 

+ t C13 ox 
K23 

w 

R 

ötf 
•» 

"■ 
öl? 

* 

T 
6^*      =0      (68) 

At    y - 0,b 

:tC--—+ tCl2'~ + tC2^ 

ov w   I T 
+ t c! it     _  J .  ?# *     =0 (69) 

äx R 

Again it is noted that in Equation (59),   N    = 0   when bending problems 

are considered and    p = 0   when axial compression buckling problems are 

considered. 
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APPENDIX IV 

METHOD OF SOLUTION FOR FLAT PLATES WITH MISOTROPIC LAMINAE 

For rectangular plates in which some fibers are not oriented parallel 

to the plate edges, the governing differential equations do not possess 

a closed-form solution consistent with the boundary conditions of simple 

support.    Consequently,  for this type of construction,  a Rayleigh-Ritz 

procedure is used in conjunction with the functional given by Equation 

(29) to effect an approximate solution. 

The vectors   u       and   v       and the scalar function    w    are approximated 

by 

u       =   ¥,0^ + e^32 + ... + ekak 

(70) 

where 

w    =    6^ + g272+ ...   +gk7k 

ß.l    =   ßjCx^) 

7J   =  r,j(x,y) 

(71) 

with 

a   = 

a,   a2   ...   ak      0     0     ...   0 

0    0     ...   0       a,   cr2   ,..   ak      0   0   ...    0 

0   0   ...    0     a,   u2 ^ 

(72) 
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ßl    ß2     •"     ßk        0      0       •"     0 

0      0       ...     0 ßi    ß2    * *'     ßk        0    0    ...     0 

ß    = 

0      0 0    0    ...    0        ^i    ß2    •••    ßk 

(73) 

7    = (7U) 

reni 
ei2 

1     *             1 i *     i 
1     *             1 

elJ 
e2l 

1      *             1 
1     *           \ 
1     *             ' 

e2k 

• 1 
• 1 

l^lJ 

(75) 
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^11 

•12 

•Ik 

"21 (76) 

■2k 

and 

Lkk 

1 

g = 
(77) 

Equations (70) can be written as 

u  = a • e 

v   = ß • I 

w = r 

(78) 

With the introduction of Equations (78) into Equations (29) with R -> 

and cognizance taken of the identities, Equations (30), the total po- 

tential energy becomes 
L b 

e 
U 

2    0  0      ' 
(Cont'd; 
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^T.(?7+2?3+^).^fT.^+2~ioJ 

+ (n-D aB ^ ^ . M>v-j)' 

where 

• «^ •  e + g      *  *i5 ' 7I [dxdy ?K 
//| r (»'■'..■'■..'■»)•■*'■'I™ (79) 

*^ '8 

^lO 

S1. 

,y 

S1 

a^ 

s1 

a1 

,y 

a^ 
,y 

r 
^ 

'ii 

"22 

»At 
C12 

"13 
~* 
C13 

C33 

"33 

C33 

-33 

C23 

a 

a 

a 

ß 

or 

' 

■ 

- 

a 

(80) 

(Cont'd) 
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"12 

"13 

hk 

<t 15 

a • A • a 

ß . A • ß 

7 ^ 
.T 

.T 

a 

Due to the form of a and ß as given by Equations (72) and (73), the 

matrices $. given in Equations (80) have, in turn, a special form. 

These matrices are equivalent to partitioned matrices in which the 

number of submatrices equals the number of elements in C 

and B ' , respectively. 
ij 

or 

With 

c? = 

a. 

a. 

a, 

(81) 

—        - 

ß2 

• 

\ 

(82) 

and T* as given by Equation ilk),  the submatrices are formed by multi- 
<v)f 

plying their corresponding elements in C. . by the matrix product in- 

volving the vectors C? , (3* , and 7 or their derivatives. For example, 
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~» to be a 2 x 2 matrix, *,  is formed from four sub- with C11 assumed ^ ^ 

matrices given by the respective element of C^ times the prlx 

Upon performing the integrations 

L b 

0 0 

L b / 

// 
0 0 

L b 

«2 + *9 + 2*11 + 

// ( *? + 2*3 + 2*5 ) ^^ 
o o 

L b 

" // (J8 + 2jlo) 
0 0  x        ' 

■ ? // V 

,(83) 

0 0 

L b 

*       0 0 

dxdy 

dxdy 

ST = (n-1) GB 
o o x 

the total potential energy given by Equation (79) becomes 

U + V    =   - 
2 

. ^1^. s0.f + l?
T- S3: f eT •  ^ • ^+1>T • S2 • I^+e1 '83 

+  f
1- s^.^ 

.^T.g     2.^. g6.f+^T.'s7.^ 

0 0 L 

dxdy (810 
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Extremization of   (U + V)   with respect to .'g , t  ana   gf   leads to 
i    j iihe following vector equations: 

• e;+|so + S?^ • I*- S^ • 

||-V?-s6,?+ 

7»      5^       7? 7-,S6 • g 

035) 

(86) 

(87) 

The characteristic functions   7. , a. > and   ß.!    (j = 1,2,3,4)    given 

by Equations (T^),   (Bl) and. (82), respectively,  are. now taken as      1 

a,   =   cos i^j^sin -r- 3 Lb L D 

&* cos Ä 
L D 

I ' 

»^ JK* „4„ J«y 7j    =    sip ii— pin iJLj 

ß .      =     Sin Xr^-  COS  -r- 
j L b 

, 

J<-1,2;3A 

,' (88) 

J 

In view of Equations (80) arid (80), the integration of the matrix in- 

tegrals    S.    (J = 1,2, ...,7) , Equations (83),  can be effepted with 

respect to the functions   a. , ß. , and   7.    .    Subsequent substitution 

of the integrated   'S.    functions    (j = 1,2,...,7)    into the'Euler 

equations,  Equatibns  (85) through (87), leads to a set of algebraic' 

equations.    The solution of jthese algebraic equations yields' the 
'-»•-♦-» ' ' j 

,    desired vectors    e ,  f ,' and   g . ' ■ 
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APPENDIX V 

EXPANSION OF GOVERNING EQUATIONS AM) BOUNDARY CONDITIONS 

CORRESPONDING TO A FIRST APPROXIMATION (m = l) FOR 

FIAT PLATES (R -»«»); REDUCTION TO REISSNER PLATE THEORY 

With the definitions 

A. . 

3. . 

V / 

k=i 
t=w 

n v / 
Z_   ! ^ ^ 
k=l 

n 

D. 
1J k  ij 

k=l 

(89) 

i 1,2,3 
1,2,3 

and    m = 1    , the governing differential equations,  Equations  (31) through 

(33),   can be expanded to give the following five governing scalar equations 

for the bending    (N    = 0)    of flat plates    (R -*»)  . 

A 0      PA 0      A      1^0 
11 ^F +      13 öxöy +    33 öy2 

Ö v0 a v0    d v0 
+ Al3 ^T + (Al2 + ^ ^ + A23 ^ 

2 *       ^2 * >,2 * 
d ^       o U-      o u 

+ B —~± +  2B „   + B —r 
11 Ox2     13 öxöy   33 öy2 

>2 * N2 *      ^2*1 
d v d v      d v 

= 0 (90) 
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•- *~mv*mmmmm^i 

^2 * 

'13 hxc 

.2 * ^2 * ö u ö u0 

£+(A1?+A,J— + A   , -3- 112     "33' öxäy        '" öy 

^2  * 

ox' öxäy 
22 : 2 

+ B, 

^2 * 
OU.l 

oxöy 
23 ^ 2 J öy 

+ B33 r^+ 2B23 —+ B 

>2  * i o v. 

ox' öxöy 
22 ^ 2 

öy 
=    0 (91) 

-.2 *                 N2 * >2 * 

B,.  -^ + 2B,-  ^ + B, 
11 bx 13 öxöy '33^ 

^2 * o v, 
v2 * ^2^*- 

+    B^ ^ + (B12 + B33)  ^ + *23^ 

öV äV ö2^ 
+   Dll Z^ + 2D13 ZZ + D33 — ox' öxäy        ■" öy£ 

^2 * .2 * >2 * 
ö v. d v 

+    D^ —*i + (Dip + D„J  i + D, 
13 Ox2 12        33    öxöy 

23 öy2 

+    (n-1)  GBt 
(■.•:)■ 

(92) 
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v2 * 

0 
i rr+ (D3j+ V 

2 * Ö u0 
+ B. 

c)x öxöy  c ay4 

c^'v        ä V       ($'\ 
+ B  -^+ 2B0  H + B  —, 

33 Ox"     '-j öxäy   22 öy£ 

.2 * cTu* 
+ D13 -^ + (D33 + Dl2) ^ + D23 

öxöy 

N2 *      x2 *     ^2 * 

+ D  —^ + 2D   i + D  —^ 
^ öx^    jJ öxöy   22 öy^ 

+ (n-1) GBt (■:-s)-» (93) 

- (n-1) GBt 
öx  öy  öx   öy 

p = 0 (9^) 

The boundary conditions associated with Equations (90) through (9^) are 

obtained by expanding Equations (3^) through (39) for m = 1 and R -»» 

These expansions are straightforward and result in the following scalar 

equations. 

At    x = 0,L 

11 

äu 

+ A 0 
12 öy 

+ A 
13 W       Ox / 

+   B, 
11 

'33 
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Ox 12 äy l3\öy       öx /J 0 

öv»     öu, 

Vöx       öy /       23 öy 13 öx 

öu, 

öx 
(Cont'd) 
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öy      dx  /      23 öy 13 äx   . 

^+B     ^ + B     l-Z + to) 
öx        -^dy 13\öy       äx / 

6V0   -   0 \ 

11 

B33läy 
+irr 23ay +Bi3r 

/hu!   hv*\        OIL        av*l     # 

33\öy       dx  /       l3öx 23öy  J        1 

(n-1) GBt 
/öw e-) 6w    =    0 

At   y = 0,b 

ay irrBi3^ + B
23^ • 

A22^+Ai2^+A2K+^) 
.22ay      ^2öx 23\öx       äy / 

22 öy        12 öx 23 Vox       öy  / 

6uJ   =    0 

(95) 

^Vöy      öx  /       13 öx 23öy 

5v0   =   0 

(Cont'd) 

(96) 
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33 W        öx   /       lj öx ^ Öy  J 1 

* 

L22 ^y 12 äx 23\öy       öx  / 

=   Ü 

(n-l)  GBt e-o- 6w 

For plates symmetric about their reference planes, the material constants 

B. . vanish. Consequentlyj, the membrane displacements, u0 and v0 , 

and the bending displacements, u. , v1, and w , uncouple and only 

Equations (92), (93) and (9^) are required to describe the plate behavior. 

In addition, for homogeneous plates (n -»« , t -»0) ; the material 

constants become 

13 
D23 = 0 

Dll = D22 = D 

J12 

33 

VD (97) 

(n-l) tG. B 

2(1 + VT 
Eh 

^(1 + v) 
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Thus, for homogeneous plates, Equations (92) through (9k) reduce to 

r a V i - v a V i + v ^ V i Eh ĉw v 
_ D i + _ i + + ( i — ) 0 ( 9 f t ) 

L d x 2 by 2 c i xdy j 2(1 + v ) \ ( ,x ' 

[c)2v* 1 - v d2v* 1 + v S2u*"| Eh / , c)wv 
+ — — + — — — I + lv - — 1 - 0 (.9J) 

by2 2 bx 2 dxdy J 2(1 + v) V Sy / 

2 2 * "N * Eh w d"w Jem dv \~l 
- 0 (100) 

2(1 + v) U x by \bx oy / J 

Differentiation of Equations (98) and (99) with respect to x and y , 

respectively, and summation of the two resulting equation? lead to 

Kb2 b2 \ J Svl \1 Eh f/° w ^w\ /Sul ° l\1 -£*&){STVfl" lUTi^rUr %J| 
(103) 

Equation (100) gives 

/du* dv*\ 2(1 + v)p d2w dcw 
( ^ + ^ ) = + — + (102) 
\bx by f EA dx oy 

Then, substitution of Equations (102) into Equation (101) results in 

h2 

DV*w = - ' V^p + n (103. 
6(i-v) 

Equation (103) is of the same form as the governing equation in Reissner 

plate theory.1^ The only difference between Equation (iiOJx and the 

governing equation of the Reissner plate theory appears in the coefficient 

of the first term on the right-hand side of the equation. This coef-

ficient is slightly different in the Reissner theory because the trans-

verse shearing stresses are assumed therein-to vary parabol ica. iy through 

the cross section. For m = 3 in the present analysis, the transverse 

shearing stresses are constant through the thickness of the plate. 
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